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1 Supplementary Material

1.1 Loss Landscape Analysis of Pretext Tasks

In this section, we provide further details of the loss surface around the model
pretrained with VCOP, Speed, and CtP video self-supervised learning (video-
SSL) approaches, both in centralized and Federated Learning (FL) settings as
shown in the Fig. 1] We use filter normalization [2] method to generate these loss
surfaces around the pretrained model. One can see from Fig. [} that the video-
SSL models pretrained with FL provide a wider minima than the centralized
approach. Except for CtP, the loss surfaces of VCOP and Speed are populated
by the local peaks both in centralized and FL settings. The heights of these local
peaks are directly proportional to the loss values. These local peaks further hint
toward the better retrieval performance obtained with CtP as it shows a fairly
smooth loss surface compared to those obtained by VCOP and Speed, both
in centralized and FL settings. We can further see from Fig. [I] that the local
peaks in FL version of VCOP are higher than the corresponding peaks in the
centralized version, suggesting the reasons of obtaining low retrieval performance
in FL settings against the centralized settings.

1.2 Key Hyper-parameters Tuning

In this section, we show the tuning process for key hyper-parameters and how
they affect retrieval performance.

Retrieval performance of FedVSSL for different values of a. Table.
shows the results of various combination of loss-based aggregation and Fe-
dAvg for FedVSSL. One can see that the retrieval accuracy is highest when the
weighting for loss-based aggregation («) equals 0.9. We keep a = 0.9 for all the
experiments in our main paper.

Effect of momentum on the performance of FedVSSL. Table [2| shows
the effect of momentum on retrieval accuracy. Indeed, the SSL models perform
better when eliminating momentum during local training.
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Fig. 1: Loss landscape around the model pretrained with VCOP, Speed and Ctp
video-SSL approaches in centralized and FL with FedAvg. We can see that FL
setting provide a wider loss surface than the centralized one.
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Table 1: Retrieval accuracy of the combination of loss-based aggregation and
FedAvg on UCF-101 and HMDB51 Dataset with 300 rounds pre-training on
K400-Non-IID. « represents the weighting for loss-based aggregation.
a 01 02 03 04 05 06 07 08 09
UCF101
R@1 31.62 31.62 30.80 31.88 31.30 30.72 32.28 30.56 32.65
R@5 50.09 50.01 48.45 50.36 49.62 48.51 50.17 49.82 50.49
HMDB51
R@1 14.84 15.75 16.01 15.69 14.97 16.21 16.47 15.56 16.41
R@5 33.92 36.54 34.58 34.71 33.86 34.71 35.36 35.16 37.32

Table 2: Retrieval accuracies (%) on UCF101 and HMDB51 with CtP[4] video-
SSL approach using FedAvg, Loss-based aggregation and FedVSSL. The pre-
training is performed on K400 (Non-IID). { means updating both #° and #7 in
FedVSSL.

Method Retrieval
UCF HMDB
R@l R@5 R@l R@5
w/ momentum

FedAvg(Baseline) [3] 29.29 48.90 13.66 32.42
Loss[T] 31.30 49.48 14.31 34.84
FedVSSLT (a=0,8=1)|30.16 49.49 14.71 34.71
FedVSSL (a = 1,8 = 1) 30.53 48.67 15.29 34.71

w/0 momentum

FedAvg 32.62 50.41 16.54 35.29
Loss 32.54 50.01 14.44 34.97
FedVSSL' (a O,ﬁ: 1)[32.22 50.17 14.18 36.80
FedVSSL' (o= 1,8 = 1) |32.67 50.28 16.21 36.80

1.3 Qualitative Results of Video Clip Retrieval

In this section, we show the visual retrieval results of different FL aggregation
strategies as well as the proposed FedVSSL approach. We show these results
in Fig. [ to Fig. B Fig. [2] shows the query clips in the test set of UCF-101,
which are used to retrieve the Top-3 clips, Fig. [ to Fig. [§ in the training
set of UCF-101 using KNN. It can be seen from the visual results that our
proposed FedVSSL approach performs comparatively better than FedAvg, Loss
and FedU by retrieving similar clips in the category of BenchPress, CricketShot,
and ThrowDiscus.
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Fig. 8: Top-3 retrieval results with FedVSSL (alpha = 1,8 =1)

1.4 Further Exploration

Distributed Training of Video-SSL Approach on the Central Server
with FedAvg. We first evaluate the performance of a centralized distributed
model where the whole data is available, but the training is conducted in a
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distributed fashion. In this settings, we first pretrain 5 models using CtP that
share the data but not the weights. During each round, we randomly shuffie the
whole dataset and divide it into 5 equal partitions. Each model is then trained
on one of the partitions for 1 epoch, after which we performed the weighted
averaging of all these models using FedAvg. Table [3| shows the result of this
approach against the CtP with FedAvg and Non-IID data. We can see that
training video-SSL in FL is equivalent to learning a large-scale distributed system
with data privacy.

Table 3: Results of using FedAvg in the centralized distributed settings and FL
settings

Method Fine-Tune Retrieval
UCF HMDB  UCF HMDB
Top-1 Top-1 R@1 R@5 R@1 R@5
FedAvg (Centralized) 81.76 49.85 30.16 48.27 14.71 32.68
FedAvg (FL) 81.95 49.15 29.29 48.90 13.66 32.42

Comparison between FedVSSL and FedU. In the FL settings with large
number of clients, e.g., 100, FedU[5] is equivalent to only updating §°. This is
because the clients are selected at random and the difference between the weights
of the #° using FedAvg in the preceding round and current round will be quite
large. This means that the classification head #7¢ on the client side is updated
very few times with the global 64" throughout the training. Table {4 shows the
fine-tuning and video clip retrieval results for CtP video-SSL approach using
FedU and FedAvg (with only updating #°). One can see that FedU and FedAvg
has obtained comparatively similar results indicating that the prediction network
67! on the clients are updated very few times.

Table 4: Comparison of FedU with FedAvg
Method Fine-Tune Retrieval
UCF HMDB  UCF HMDB
Top-1 Top-1 R@1 R@5 R@l RQ5
FedU 80.17 53.73 34.07 52.29 14.90 36.67
FedAvg(update 6° only) 79.91 52.94 34.34 51.71 15.82 36.01
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